USBM Cell a Useful Stress Measurement Tool MMS’s experience

Background

The USBM cell was used extensively in the 1970’s. In the early development stages of the CSIRO HI cell, it was used by CSIRO and others to validate the HI cell.

The USBM cell is a two dimensional device and as such it only measures stresses in a plane perpendicular to the borehole. In order to measure the three dimensional stresses, measurements are required in a minimum of two non parallel boreholes. However, to confidently determine the three dimensional stresses, three non co-planar boreholes are required, with about three tests (overcores) in each borehole.

MMS initially acquired the USBM cell for use at a mine in Queensland to determine the 3D stress field, where a previous attempt at overcoring CSIRO HI Cells in the same rock unit failed. A satisfactory bond between the HI Cells and the pilot hole could not be achieved.

MMS has developed software that can be used to determine the 3D stresses from USBM tests conducted in three holes. This code was checked against an independently developed code by the United States Bureau of Mines. Very good agreement was achieved by comparing stress outputs from the MMS and USBM codes.
As the USBM cell is reusable and does not require grouting the instrument into the borehole, it can be quite a rapid testing tool. MMS has achieved four overcore tests and four biaxial tests in one day.

Since using the USBM cell to determine the 3D stress field at the mine above, MMS has been using the USBM cell on a routine basis to gain more strain data at sites where MMS conducts CSIRO HI cell tests. This data is then included with the CSIRO HI cell data to determine the site 3D stress result.

The USBM cell has also proved invaluable in obtaining more rock property data. In some cases where the HI cell core has broken and a biaxial test on this core was not possible, the USBM cell was inserted in the same core and biaxially tested. The modulus obtained was then used in the analysis to determine the stresses for the HI Cell.

Another useful application of the USBM cell is when discing of the core is encountered. At one recent mine site we encountered discing of the core in a borehole to approximately 4 m depth. Two USBM tests were conducted immediately after the discing to determine the stresses that were required to cause discing of the core.

The USBM cell may also be useful in pillars where only the 2D stress field is required, and rapid testing can be performed.

MMS USBM Cell and CSIRO HI Cell Comparison

Below is a comparison of the USBM cell data and CSIRO HI Cell data to date that have been conducted by MMS.

As the USBM cell only measures the maximum and minimum stress normal to the borehole (magnitudes and directions), the CSIRO HI cell results have been rotated to obtain the maximum and minimum stresses in the borehole.

To calculate the secondary principal stresses for the USBM cell, two formulas can be used; one which assumes zero stress in the borehole direction (plane stress condition) and the second, a more exact solution where the axial stress in the borehole is included (plane strain).

In MMS’s comparisons we use the more exact solution. We are able to rotate the stresses obtained from the CSIRO HI cell results and determine the stress in the axial direction of the borehole and use this to calculate the secondary principal stresses for the USBM cell.
Maximum Stress Direction

Looking in hole

Maximum and Minimum Magnitudes

![Bar chart showing stress magnitudes for different cells and stress directions]
SITE 1 Secondary Principal Stresses Around Hole

DIRECTIONS
LOOKING INTO HOLE

MAGNITUDES

STRESS (MPa)

YOUNG’S MODULUS

GPa

HI Cell
USBM Cell
SITE 2 Secondary Principal Stresses Around Hole

DIRECTIONS

LOOKING INTO HOLE

MAGNITUDES

YOUNG'S MODULUS

HI Cell

USBM Cell
SITE 3 Secondary Principal Stresses Around Hole

DIRECTIONS
LOOKING INTO HOLE

HI Cell
USBM Cell

MAGNITUDES

STRESS (MPa)

TEST 1
TEST 2
TEST 3
USBM

MAX
MIN

YOUNG'S MODULUS

GPa

TEST 1
TEST 2
TEST 3
TEST USBM1

MMS USBM VS HI ver1.2.doc
SITE 4 Secondary Principal Stresses Around Hole

DIRECTIONS

LOOKING INTO HOLE

HI Cell

USBM Cell

MAGNITUDES

STRESS (MPa)

TEST 1

TEST 2

TEST 3

USBM

YOUNG'S MODULUS

GPa

TEST 1

TEST 2

TEST 3

USBM
SITE 5 Secondary Principal Stresses Around Hole

DIRECTIONS

LOOKING INTO HOLE

MAGNITUDES

STRESS (MPa)

MAX

MIN

YOUNG'S MODULUS

GPa

0 10 20 30 40 50 60 70

Test 1 Test 2 USBM Test 3 Test 4

0 10 20 30 40 50 60 70 80 90

Test 1 Test 2 USBM Test 3
SITE 6 Secondary Principal Stresses Around Hole

DIRECTIONS

TESTS at 5m (Not Virgin)

LOOKING INTO HOLE

MAGNITUDES

STRESS (MPa)

MAX

MIN

YOUNG'S MODULUS

GPa

MMS USBM VS HI ver1.2.doc
SITE 7 Secondary Principal Stresses Around Hole

Looking into Hole

MAGNITUDES

STRESS (MPa)

HI1 HI2 HI3 US1 HI4 HI5 SITE

MAX MIN

YOUNG'S MODULUS

GPa

HI1 HI2 HI3 US1 HI4 HI5 SITE

MMS USBM VS HI ver1.2.doc
SITE 8 Secondary Principal Stresses Around Hole

Looking into hole magnitudes

Stress (MPa)

Youden’s modulus

H1 Cell

USBM Cell

MAX

MIN

Young’s modulus

GPa

0 5 10 15 20 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50

0 10 20 30 40 50 60

1 2 US1 3 4 SITE
SITE 9 Secondary Principal Stresses Around Hole

LOOKING INTO HOLE

- **HI Cell**
- **USBM Cell**

MAGNITUDES

- **STRESS (MPa)**
 - 0
 - 5
 - 10
 - 15
 - 20
 - 25
 - 30
 - 35
 - 40
 - 45
 - 50

YOUNG'S MODULUS

- **GPa**
 - 0
 - 20
 - 40
 - 60
 - 80
 - 100
 - 120

SITE

US1

G Ga

MAX

MIN

1

2

3

4

US1
SITE 10 Secondary Principal Stresses Around Hole

LOOKING INTO HOLE

MAGNITUDES

STRESS (MPa)

HI Cell
USBM Cell

YOUNG'S MODULUS

GPa

HI1 HI2 HI3 HI4 USB9.4 HI5 US1 SITE

MMS USBM VS HI ver1.2.doc
SITE 11 Secondary Principal Stresses Around Hole

LOOKING INTO HOLE

MAGNITUDES

- **HI Cell**
- **USBM Cell**

STRESS (MPa)

0 5 10 15 20 25 30 35

MAX

MIN

GPa

0 10 20 30 40 50 60 70 80 90

HI 1

HI 2

HI 3

US 1

SITE

MMS USBM VS HI ver1.2.doc